THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/2

ADVANCED MATHEMATICS 2 (For Both School and Private Candidates)

Time: 3 Hours

Wednesday 14 May 2003 p.m.

Instructions

- 1. This paper consists of sections A and B.
- 2. Answer ALL questions in section A and FOUR (4) questions from section B.
- 3. All necessary steps in answering each question must be shown clearly.
- 4. Mathematical tables, mathematical formulae, slide rules and nonprogrammable pocket calculators may be used.
- 5. Cellular phones are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).

This paper consists of 5 printed pages.

SECTION A (60 Marks)

Answer ALL questions in this section showing ALL necessary steps and answers.

			71.74 TO 94.00 SEC.	10 1
1.	Using a	scientific	calculator	nno

(a) $\tan^{-1}(-\frac{4}{5}) + \sinh^{-1}(\frac{2}{3})$

(01½ marks)

(b) $\log_6 9 - \ln(\frac{3}{8})$

(01½ marks)

(c) the mean and standard deviation of the distribution given in the table below:

x	1.95	3.95	5.95	7.95	9.95	11.95
f	9	รั้ง	45	42	11	4

(03 marks)

- (a) Given the statement: "If two vectors are orthogonal then their scalar (dot) product is zero".
 Write its
 - (i) inverse
- (ii) converse
- (iii) contrapositive.

(03 marks)

- (b) Determine the truth values of the following sentences:
 - (i) Either 2<1 or $2-7 \neq -5$

(ii) If 2 + 1 = 10 then 12 > 10.

(03 marks)

(a) The end point coordinates of a line segment AB are A(x1, y1) and B (x2, y2). Prove that the coordinates of the point p(x, y) dividing the line segment AB internally in the ratio λ: μ are given by

$$p(x, 1) = \left(\frac{\mu x_1 + \lambda x_2}{\mu + \lambda}, \frac{\mu y_1 + \lambda y_2}{\mu + \lambda}\right)$$
 (03 marks)

- (b) Find the coordinates of a point dividing the line segment joining Q(-3, 6) and R(6, 0) internally in the ratio 2:1. (03 marks)
- 4. (a) Find the value of angle A in triangle ABC which is such that a = 10, b = 12, c = 9. (02 marks)
 - (b) Simplify sin-1 (cosx)

(02 marks)

(c) Evaluate $\tan \left(\cos^{-1}\left(\frac{1}{2}\right)\right)$ without using calculators or tables.

(02 marks)

- 5. (a) If p, q, r are the roots of the equation $2x^3 + 3x^2 x 4 = 0$, form the equation whose roots are p^2 , q^2 , r^2 .
 - (b) Find the set of real values of x for which |3-2x| < |4+x|.

(03 marks).

6. (a) Describe, by eliminating θ , the curve represented by the equation

$$x = 4 \cos \theta$$
 and $y = 3 \sin \theta$.

(03 marks)

- (b) Show that the locus of a point p which moves such that its distance from the point (ae, o) is e times its distance from the line $x = \frac{a}{e}$ is the curve $\frac{x^2}{a^2} + \frac{y^2}{a^2(1 e^2)} = 1$ (03marks)
- 7. (a) By using its logarithmic form, show that the function cosh x is double valued. (04 marks)
 - (b) If $x = \frac{1}{2} \ln 3$, find (i) $\cosh x$
- (ii) tanh-x.

- (02 marks)
- 8. The frequency distribution below-shows the number of students at Nairobi University according to their heights:

Classes (height în cm)	Freq. (f)	
60 – 62	5	
63 - 65 .	18	
66 – 68	- 42	
6971	27	
72 – 74	. 8	
75 – 77	12	
78 – 80	16	

Using the data above, find

(a) the mean

(02 marks)

(b) semi-interquartile range.

(04 marks)

- 9. (a) The probability that Hamisi will pass this paper is 0.85 and that Amani will pass is 0.75. Find he probability that
 - (i) both will pass
- (ii) Hamisi or Amani will pass.
- (03 marks)
- (b) A box contains 9 blue and 11 red balls. Three balls are drawn at random from the box and without replacement. Find the probability that
 - (i) all three are of the same colour
 - (ii) one of the balls is red. (03 marks).
- 10. (a) Solve $z^3 1 = 0$ giving your solution in polar form.

(03 marks)

(b) (i) Show that

$$\sin n\theta = \frac{1}{2i} \left(z^n - \frac{1}{z} n \right)^{-1}$$
 (01½ marks)

(ii) Express $\sin^3 \theta$ in terms of multiple angles of θ .

(011/2 marks)

SECTION B (40 marks)

Answer FOUR (4) questions from this section showing all necessary steps and answers.

- 11. (a) Find the shortest distance from the point E(-1, -1, 1) to the line $r = 2j 3k + \lambda (2i j + 2k)$ (04 marks)
 - (b) The equation of the plane is parametrically written as

$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \bigcup \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}.$$

Find the cartesian equation of the plane.

02½ marks)

(c) Show that the lines

$$r = i + \lambda (6i + 2j - 3k)$$
 and $r_1 = i_0 + j + k + \cup (-2i + j - 2k)$ are skew. (03½ marks)

12. (a) Solve the following system of equations by using Cramer's rule

$$\begin{cases} 2x + 3y - z = -7 \\ -3x + y + 2z = 1 \\ 3x - 4y - 4z = -1 \end{cases}$$
 (04 marks)

(b) Prove by using partial fractions that

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
 (04 marks)

- (c) Find the value of $(1.023)^{\frac{1}{3}}$ without using tables or calculators to seven significant figures.

 (02 marks)
- 13. (a) (i) Express the equation $(x^2 + y^2)^2 = x^2 y^2$ in polar form.
 - (ii) Find the cartesian equation of the locus given by $r = 16 \cot \theta \csc \theta$. (05 marks)
 - (b) Find the eccentricity and coordinates of the foci of the ellipse $4x^2 + 9y^2 = 36$.

14. (a) Find
$$\frac{dy}{dx}$$
 and simplify your answer, given that $y = \frac{e^x - 1}{e^x + 1}$ (05 marks)

(b) Evaluate the following integral correct to three significant figures.

$$\int_{1}^{2} \frac{1}{\sqrt{x^{2} + 4x + 8}} \, dx \tag{05 marks}$$

- 15. (a) "Is it true that girls perform poorly in science subjects?" Is this a mathematical statement? Why? (02 marks)
 - (b) Given that a sentence has the truth table below, write down its expression in a simplified form.

	?	~P/q	P∧~q	$P\Lambda q$
	T	-F	T	Т
(05 marks)	. T	F	T	F
	T	T	F	F
	F	F	F	F

- (c) Test the validity of the argument $P \rightarrow q$, $qV \sim r \rightarrow \sim \tilde{P}$ (03 marks)
- 16 (a) (i) If x > 1, prove that

$$\frac{1}{2}\log_{\varepsilon}\left(\frac{x+1}{x-1}\right) = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots$$
 (03 marks)

- (ii) Use the result in (i) above to calculate log_e2 to three decimal places. (02 marks)
- (b) Integrate the following with respect to x:

$$f(x) = \frac{5x + 7}{x^2 + 4x + 8} dx$$
 (05 marks)